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Abstract. The ab oscillations in absorbing matter are considered. The standard model based on an opti-
cal potential does not describe the total ab transition probability as well as the channel corresponding to
absorption of the b-particle. We calculate directly the off-diagonal matrix element in the framework of the
field-theoretical approach. Contrary to the one-particle model, the final-state absorption does not tend to
suppress the channels mentioned above; or, similarly, calculation with a Hermitian Hamiltonian leads to an
increase of the corresponding values. Our approach reproduces all the results on the particle oscillations;
however, it is oriented to the description of the above-mentioned channels. Also we touch on the general
problems of the theory of reactions and decays; in particular, on infrared divergences. The approach in our
study is infrared-free. For the correct construction and verification of the models of complicated processes,
we propose the use of the low-density limit for the intermediate-state particle.

PACS. 24.10.-i; 11.30.Fs; 13.75.Cs

1 Introduction

The theory of ab oscillations is based on the one-particle
model [1–5]. The interaction of particles a and b with
the matter is described by the potentials Ua,b. ImUb is
responsible for the loss of b-particle intensity. The wave
functions Ψa,b are given by the equations of motion. The
index of refraction, the forward scattering amplitude f(0)
and the potential are related to each other, so later on
the standard approach is referred to as the potential
model.
The description of absorption by means of ImUb is at

least imperfect and should be partially revised. As an illus-
tration, let us consider the case of strong b-particle absorp-
tion. Instead of a periodic process, we get two-step system
decay:

(a–medium)→ (b–medium)→ f. (1)

Here (b–medium)→ f represents the b-particle absorption.
The potential model does not describe this process as well
as the total ab transition probability (see [6–8] and the
next section). It describes the probability of finding a b-
particle only.
By way of a specific example we consider the nn̄ transi-

tions in a medium followed by annihilation [9–16]:

(n–medium)→ (n̄–medium)→M, (2)
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whereM are the annihilation mesons. The qualitative pic-
ture of the process is as follows. The free-space nn̄ transi-
tion comes from the exchange of Higgs bosons with a mass
mH > 10

5 GeV [10, 11]. From the dynamical point of view
this is a momentary process: τc ∼ 1/mH < 10−29 s. The an-
tineutron annihilates in a time τa ∼ 1/Γ , where Γ is the
annihilation width of n̄ in the medium. We deal with a two-
step process with the characteristic time τ2 ∼ τa.
The potential model describes the probability of find-

ing an antineutron only, whereas a main contribution
is given by the process (2), because n̄ annihilates in
a time τa. In the following we consider the nn̄ transitions,
since the final-state absorption in this case is extremely
strong.
So the model should describe two-step processes like (1)

and (2). On the other hand, as the absorption Hamil-
tonian tends to zero, the well-known results on particle
oscillations should be reproduced. This program is real-
ized below. Also we present here an elaborated derivation
of the lower limit on the nn̄ oscillation time and discuss
in some detail the uncertainties connected with medium
corrections.
The nn̄ transitions in the medium are the ideal instru-

ment for the study of the intermediate- and final-state in-
teractions [8]. So, besides the oscillations proper, we touch
on the general problems of the theory of reactions and de-
cays, namely the following.

1) The infrared-free approach and its connection with the
S-matrix theory.



574 V.I. Nazaruk: Field-theoretical approach to particle oscillations in absorbing matter

2) The role of final-state absorption and decay.
3) The particle self-energy and competition between elas-
tic and inelastic interactions in the intermediate state.

4) The time-dependence of the process.

Some of these points are more important than the lower
limit on the nn̄ oscillation time; for example, the infrared-
free approach.
The paper is organized as follows. In the next sec-

tion, we recall the main results and point out the chief
drawback of the potential model. In this model the nn̄
transition probability depends critically on the antineu-
tron self-energyΣ. In the field-theoretical approach a simi-
lar thing takes place (Sects. 3 and 4). Because of this,
particular attention is given to the suppression mechan-
ism and to the origin of Σ. In Sect. 4 we arrive at the
conclusion that Σ = 0. An important effect of the com-
petition between scattering and annihilation of n̄ in the
intermediate state is studied as well. The main calcula-
tions are performed in Sects. 5 and 6. If Σ = 0, the S-
matrix amplitudes contain the infrared singularity. For
solving the problem, the approach with a finite time in-
terval (FTA) [17] is used. It is infrared-free. First of all,
we verify the FTA by the example of an exactly solv-
able potential model. The FTA reproduces all the results
on the particle oscillations (νaνb, nn̄, etc.). In Sect. 6 the
process (2) and the process shown in Fig. 8b are calcu-
lated. The linkage between the S-matrix theory and FTA
is studied as well. In Sect. 7 we complete the calculation
of process (2). Also we arrive at the conclusion that for
the processes with zero momentum transfer the problem
should be formulated on a finite time interval. The re-
sults are summarized and discussed in Sect. 8. The limiting
cases and the effects of absorption and coherent forward
scattering are discussed as well. Section 9 contains the
conclusion.

2 Potential model

In this section we touch briefly on the main results and the
range of applicability of the potential model in the case of
nn̄ transitions. The chief drawback of this model is given as
well.
Let Un = const. and Un̄ = const. be the neutron po-

tential and the optical potential of n̄, respectively. The
background field Un is included in the unperturbed Hamil-
tonianH0. The interaction Hamiltonian has the form

HI =Hnn̄+H ,

Hnn̄ = εΨ̄n̄Ψn+H.c. ,

H= (ReV + i ImV )Ψ̄n̄Ψn̄ ,

V = Un̄−Un =ReUn̄−Un− iΓ/2 . (3)

Here Hnn̄ and H are the Hamiltonians of the nn̄ transi-
tion [13, 14] and the n̄–medium interaction, respectively;
ε is a small parameter with ε= 1/τnn̄, where τnn̄ is the free-
space nn̄ oscillation time.

The model can be realized by means of the diagram
technique [6, 7, 15] or the equations of motion [12–14,16]:

(i∂t−H0)n(x) = εn̄(x) ,

(i∂t−H0−V )n̄(x) = εn(x) ,

H0 =−∇
2/2m+Un , (4)

and n̄(0,x) = 0. For V = const. in the lowest order in ε, the
probability of finding an n̄ in a time t is found to be

Wn̄(t) =
ε2

|V |2

[
1−2 cos(ReV t)e−Γt/2+e−Γt

]
. (5)

In the following we focus on the most important case:
Γt� 1. Then Wn̄(t) ∼ ε2/|V |2� 1. The total nn̄ transi-
tion probability W pott (more precisely, the probability of
finding an n̄ or annihilation products) is given by

W pott (t) = 1−|〈n(0)|n(t)〉|
2

≈ 2ε2t
Γ/2

(ReV )2+(Γ/2)2
≈
4ε2t

Γ
. (6)

The index “pot” signifies that the non-Hermitian Hamilto-
nian (3) is used.
The free-space nn̄ transition probability Wf is Wf =

ε2t2. Comparing with (6), one obtains the suppression fac-
tor Rpot:

Rpot =
W pott
Wf

=
Γ

|V |2t
∼
1

|V |t
� 1 . (7)

The energy gap δE = V leads to very strong suppres-
sion of the nn̄ transition in the medium and changes the
functional structure of the result:Wf ∼ t2→W

pot
t ∼ t. Be-

cause of this, particular attention is given to the suppres-
sion mechanism and to the origin of δE.
The energy gap is the antineutron self-energy: δE =

V =Σ. Indeed, the result (6) can be obtained by means of
the diagram technique. In the potential modelW pott = 1−
exp(−Γ pott t)≈ Γ

pot
t t. The total process width Γ

pot
t is eas-

ily calculated [6, 7]:

Γ pott =
1

T0
(1−|Sii|

2)≈−2 Im εGpotε , (8)

Gpot =
1

εn−p2n/2m−Un̄

=
1

(εn−p2n/2m−Un)−V
=−

1

V
. (9)

HereGpot is the antineutron propagator, p= (εn,pn) is the
neutron 4-momentum; εn = p

2
n/2m+Un, T0 is the normal-

ization time, T0→∞. We thus see that the suppression
factor Rpot is due to the antineutron self-energyΣ = V .
Consider now the range of applicability of the model (4).

The total nn̄ transition probabilityWt is

Wt =Wn̄+Wa , (10)

where Wa is the probability of finding the annihilation
mesons (i.e. the probability of the process (2)). The po-
tential model correctly describes theWn̄. However, for the
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calculation of Wt and Wa it is inapplicable. In the one-
particle model the total process width Γ pott is obtained
by means of (8), which follows from the unitarity condi-
tion. The same is true for (6). Since the Hamiltonian (3)
is non-Hermitian (in the first approximation one can put
ReV = 0), the S-matrix is non-unitary and (8) and (6) are
invalid [6–8]. The condition of probability conservation,

1 = |Sii|
2+
∑
f �=i

|Tfi|
2 ,

can be used only if the S-matrix is unitary or unitarized.
It must be emphasized that in the problem under study

the unitarity of S-matrix is of particular importance be-
cause ImV enters the leading diagram and plays a crucial
role (see (9)).
As a result, in the potential model the effect of final-

state absorption acts in the opposite (wrong) direction [8],
which is not surprising, since the unitarity condition and
non-unitary S-matrix are mutually incompatible. The con-
dition SS+ = 1 is applied to the essentially non-unitary S-
matrix. (The potential model does not describe the Wt at
all. The non-unitarity is only a formal manifestation of this
fact.) As shown below, the potential model also does not
describe the competition between scattering and annihila-
tion of n̄ in the intermediate state and the time dependence
of the process (2). The greater | ImV |, the greater the error
in the W pott and Wa. So (6) and (8) are incorrect. A dir-
ect calculation of the antineutron absorption (process (2))
is called for.

3 Free-space process

First of all we consider the free-space n̄N annihilation (see
Fig. 1a) and the free-space process

n+N → n̄+N →M , (11)

shown in Fig. 1b.
The matrix element of the S-matrix Ta and the ampli-

tudeMa corresponding to Fig. 1a are defined as

iTa = 〈M |T exp

(
− i

∫
dxHn̄N (x)

)
−1|n̄N〉

=Na(2π)
4δ4(pf −pi)Ma . (12)

Here 〈M | represents the annihilation mesons, Hn̄N is the
Hamiltonian of the n̄N interaction, Na includes the nor-
malization factors of the wave functions.

Fig. 1. a Free-space n̄N annihilation. b Free-space process n+
N → n̄+N →M

Ta and Ma involve all the n̄N interactions followed by
annihilation including n̄N rescattering in the initial state.
The same is true for the subprocess of n̄N annihilation in-
volved in Fig. 1b: the block Ta should contain all the n̄N
interactions followed by annihilation.
We write the formulas corresponding to Fig. 1b. The in-

teraction Hamiltonian is

HI =Hnn̄+Hn̄N . (13)

Formally, in lowest order in Hnn̄ the amplitude of the pro-
cess (11) is given by

M1b = εG0Ma ,

G0 =
1

εn−p2n/2m
. (14)

Here G0 is the antineutron propagator. SinceMa contains
all the n̄N interactions followed by annihilation,G0 is bare.
We emphasize this fact as it gives insight into the origin
ofΣ.
Due to the zero momentum transfer in the nn̄ transi-

tion vertex, the 4-momenta of n and n̄ are equal. The pre-
and post-nn̄ conversion spatial wave functions of the sys-
tem coincide: |Nnp〉sp = |Nn̄p〉sp. Actually this is true for
any neutron state (for any nuclear model).
For the time being we do not go into the singularity

G0 ∼ 1/0. It results from the zero momentum transfer in
the vertex corresponding toHnn̄. The value ofΣ is discon-
nected with Hnn̄ and we want to separate these problems.
The general consideration is given in Sect. 6.

4 nn̄ transitions in the medium

In this section the origin ofΣ (energy gap) is studied in the
framework of microscopic theory. It is shown that the value
of Σ is uniquely determined by the definition of the anni-
hilation amplitude of n̄ in the medium. It turns out that
for a realistic definition Σ = 0. Also we consider the com-
petition between scattering and annihilation of n̄ in the
intermediate state.

4.1 S-matrix approach

Let us consider the process (2). (The nn̄ transitions with
n̄ in the final state are considered in the next section.) We
use the scheme identical to that for process (11) with the
substitution n̄N → (n̄–medium). The background field Un
is included in the neutron wave function (HamiltonianH0);
the quadratic termsHnn̄ are included inHI:

HI =Hnn̄+H ,

H(t) =

∫
d3xH(x) . (15)

HereH is the Hermitian Hamiltonian of the n̄–medium in-
teraction. The sole physical distinction with the model (4)
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is in the Hamiltonian H. Recall that the potential model
does not describe the processes (2) and (11) [6–8].
The amplitude of the process, M2, is uniquely deter-

mined by the Hamiltonian (15):

M2 = εG
m
0 M

m
a ,

Gm0 =
1

εn−p2n/2m−Un
(16)

(see Fig. 2a). The matrix element of the S-matrix T n̄fi and
the amplitude of antineutron annihilation in the medium
Mma are

iT n̄fi = 〈f |T
n̄|0n̄p〉=N(2π)

4δ4(pf −pi)M
m
a ,

T n̄ = T exp

(
− i

∫ ∞
−∞
dtH(t)

)
−1 (17)

(compare with (12)). Here |0n̄p〉 is the state of the medium
containing the n̄ with the 4-momentum p, 〈f | denotes
the annihilation products, N includes the normalization
factors.
The definition of the annihilation amplitude Mma

through (17) is natural. If the number of particles of the
medium is equal to unity, (17) goes into (12). The annihi-
lation width Γ is expressed throughMma : Γ ∼

∫
dΦ|Mma |

2.
Since H appears only in the Mma , the antineutron propa-
gatorGm0 is bare. In the next section we perform a rigorous
calculation ofM2.
It is important thatM2 ∼Mma . The value of Γ and cor-

rections to Mma (if they are possible) have little effect on
the results.
Construct now the model with the dressed propagator

(see Fig. 2b). In the Hamiltonian H we separate out the
real potential V =ReUn̄−Un,

H= V Ψ̄n̄Ψn̄+H
′ , (18)

and include it in the antineutron Green function

Gm =Gm0 +G
m
0 V G

m
0 + · · ·=

1(
1/Gm0

)
−V

=−
1

V
. (19)

Then

M2 = εG
mM ′a , (20)

GmM ′a =G
m
0 M

m
a . (21)

The propagator Gm is dressed: Σ = V 
= 0. According
to (21), the expressions for the propagator and vertex

Fig. 2. a nn̄ transition in the medium followed by annihilation.
The antineutron annihilation is shown by a circle. b Same as a
but the antineutron propagator is dressed (see text)

function are uniquely connected (if HI is fixed). The
“amplitude” M ′a(V,H

′) should describe the annihilation.
However, below is shown that M ′a and model (20) are
unphysical.
We recall that the amplitude Ma involves all the n̄N

interactions followed by annihilation including rescatter-
ing in the initial state. Similarly, Mma involves all the n̄–
medium interactions followed by annihilation including the
antineutron rescattering in the initial state. Compare now
the left- and right-hand sides of (21).
From the physical point of view, model (20) has no jus-

tification because of the following reasons.
1) If the number of particles of medium n is equal to

unity, the model (20) does not describe the free-space pro-
cess (11) because (14) contains the bare propagator.
2) The observable values (Γ for example) are expressed

through Mma and not M
′
a. Compared to M

m
a , M

′
a is trun-

cated because the portion of the HamiltonianH is included
in Gm.M ′a does not have a physical meaning.
(The formal expression for the dressed propagator

should contain the annihilation loops as well. In this case
the statements given in 1) and 2) are only enhanced.)
3) Equations (19) and (20) mean that the annihilation

is turned on upon forming of the self-energy part Σ = V
(after multiple rescattering of n̄). This is counter-intuitive,
since at low energies [18–20]

r =
σn̄pann
σn̄pel

> 2.5 (22)

and the inverse picture is in order: in the first stage of the
n̄–medium interaction the annihilation occurs.
Realistic competition between scattering and annihila-

tion should be taken into account. Both scattering and
annihilation vertices should occur on equal terms inMma or
Gm. According to 1) and 2) the latest possibility should be
excluded. In line with the physicalmeaning ofMma andM2,
the amplitude (16) allows for the above-mentioned effect
(see Sect. 4.3).
The structure with a dressed propagator like (20) arises

naturally if V and H′ are the principally different terms
and the vertex function does not depend on V . In the prob-
lem under consideration this is not the case. This is evident
from the formal expansion of the T -operator

T exp

(
− i

∫
dx
(
V Ψ̄n̄Ψn̄+H

′
))
. (23)

It is significant that even the non-realistic model (20)
gives reinforcement in comparison with the potential
model [6, 7]:

Wa

W pott
= 1+

(
Γ/2

V

)2
> 1 , (24)

because for the model (20) the probability of process (2) is

Wa ∼ Γ (25)

instead ofW pott ∼ 1/Γ .
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To summarize, the introduction of the dressed prop-
agator Gm (energy gap) into the model for the process
entails an uncertainty of the vertex function M ′a. The all-
important effect of the competition is not taken into ac-
count. The limiting case n = 1 is not reproduced. M ′a is
unknown and unphysical.
We do not see the reasons for the existence of the field

V , which should be included into Gm, and thus the an-
tineutron propagator is bare. For the process shown in Fig.
8b the propagator is bare as well. Essentially, this fact gov-
erns the situation. Below we assume the definition (17) and
consequently the model with the bare propagator (16).

4.2 Simplest model

The fact that the antineutron propagator is bare is obvious
in the model containing the annihilation vertex only. We
consider Fig. 1a. Assume that

Hn̄N = Φ
∗
MgaΨn̄ΨN , (26)

where ΦM denotes the fields of mesons. The diagrams of
the n̄N annihilation are shown in Fig. 3.
Similarly, for the n̄–medium annihilation we take

H=Ha =
∑
i

Φ∗MgaΨn̄ΨNi . (27)

The corresponding diagrams are shown in Fig. 4.
Consider now the process (2) using the same Hamilto-

nianHa. The diagram is shown in Fig. 5; the Hamiltonian is
givenby (15),whereH=Ha. The antineutronpropagator is
bare. The questions connected with the self-energy part do
notarise inprinciple, becauseHamustappear only in theT n̄fi
(see Fig. 4). The block T n̄fi is described by (17) and (27).
In view of (22), the models like (27) are reasonable,

and so it seems obvious that the antineutron propagator is
bare.

Fig. 3. n̄N annihilation. The interaction Hamiltonian is given
by (26)

Fig. 4. Antineutron annihilation in the medium

Fig. 5. nn̄ transition in the medium followed by annihilation

4.3 Scattering and annihilation of n̄
in the intermediate state

In the low-density limit the relative annihilation probabil-
ity of the intermediate antineutron r1 is [18–20]

r1 =
σa

σt
> 0.7 , (28)

σt = σa+σs, where σa and σs are the cross sections of free-
space n̄N annihilation and n̄N scattering, respectively.
The ratio (28) or (22) is very important for the correct con-
struction of the model.
The model given above reproduces the magnitudes of r

and r1. Indeed, let us consider the free-space process

n+N→ n̄+N → f , (29)

where f denotes n̄N orM . The annihilation and scattering
channels are defined by (11) and

n+N→ n̄+N → n̄+N , (30)

respectively. The corresponding diagrams are shown in
Figs. 1b and 6a. Using the amplitude (14), the cross section
of process (11) is found to be

σnNa =N

∫
dΦ|M1b|

2 = a2N

∫
dΦ|Ma|

2 = a2σa , (31)

a = εG0. The normalization multiplier N is the same for
σnNa and σa.
For process (30) a similar calculation gives

σnNs = a2σs (32)

and correspondingly

σnNa
σnNs

=
σa

σs
= r . (33)

The model (13) reproduces the ratio r.
For the nn̄ transition in the medium the calculation will

proceed by means of the optical theorem. To check this
calculation we obtain r1 for the free-space process (29) by

Fig. 6. Free-space processes n+N → n̄+N → n̄+N (a) and
n+N → n̄+N → n+N (b)
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means of the optical theorem as well. The on-diagonal ma-
trix element (see Fig. 6b) is

M(0) = εG0Ms(0)G0ε= a
2Ms(0) , (34)

whereMs(0) is the zero angle n̄N scattering amplitude. Let
σnNt be the total cross section of process (29). Using the op-
tical theorem in the left- and right-hand sides of (34), we get

σnNt = a2σt (35)

and

σnNa
σnNt

=
σa

σt
= r1 . (36)

For process (29) the relative probability of the annihilation
channel is given by (28), as we wished prove.
In the medium instead of (11) and (29) one should con-

sider the process (2) and the inclusive nn̄ transition

(n–medium)→ (n̄–medium)→ fm , (37)

respectively. Here fm denotes M or n̄. The result is the
same (see Appendix A): for process (37) the relative anni-
hilation probability of the intermediate n̄ is given by (28).
The ratio (28) is explicitly used only in the classical

models like the cascade one [21]. However, the Hamiltonian
should contain all the information needed, which allows for
the calculation of r or r1. The fact that the model repro-
duces these ratios is very important; otherwise one can get
a wrong, additional suppression as in model (20). Since
the potential model does not describe the processes (11)
and (2), it cannot reproduce (33) and (A.6).
The principal results of Sect. 4 are as follows. (a) The

antineutron propagator is bare and singular. The par-
ticle self-energy and amplitudes of subprocesses should be
self-consistent. (b) In the low-density limit the ratio (28)
should be reproduced. This can be considered as a neces-
sary condition for the correct construction of the model.
Model (15) satisfies this requirement.

5 Field-theoretical approach
with finite time interval

The model must satisfy the following requirements. a) The
S-matrix should be unitary. b) The model should repro-
duce the free-space process shown in Fig. 1 and competi-
tion between scattering and annihilation considered above.
These conditions are obvious; however, they are not ful-
filled in the potential model.
The interaction Hamiltonian is given by (15). We use

the basis (n, n̄). The results do not depend on the basis.
A main part of the existing calculations have been done
in the n–n̄ representation. The physics of the problem is
in the Hamiltonian. The transition to the basis of station-
ary states is a formal step. It makes sense only in the case
of the potential modelH = V = const., when the Hamilto-
nian of the n̄–medium interaction is replaced by the effect-
ive mass H →meff =ReV − iΓ/2. Since the calculation of
process (2) will be done beyond the potential model, the

procedure of the diagonalization of the mass matrix is un-
related to our problem.
The S-matrix amplitudes corresponding to Figs. 1b

and2a are singular, asG0 ∼ 1/0 andGm0 ∼ 1/0.Contrary to
quantum electrodynamics, the formal sum of the series in ε
gives the meaningless self-energyΣ ∼ ε2/0. This is because
the HamiltonianHnn̄ corresponds to the 2-tail case. There
is no compensationmechanismby radiative corrections.
For solving the problem, the FTA is used [17]. It is

infrared-free. The calculation is performed by means of the
evolution operator U(t, 0). The limiting transition t→∞
is not made, as it is physically incorrect. The FTA can be
used for any problem, since for the non-singular diagrams
it converts to the S-matrix approach (see Sect. 6.1).

5.1 nn̄ transitions with n̄ in the final state

First of all we consider the nn̄ transitions with n̄ in the final
states on the finite time interval (t, 0) (see Fig. 7).
We introduce the evolution operator U(t, 0) = I +

iT (t, 0). In the lowest order in ε, the matrix element Tn̄n is
given by

〈n̄0|U(t, 0)− I|0n〉= iTn̄n(t, 0)

=−i〈n̄p0|

∫ t
0

dtcHnn̄(tc)

+T n̄(t, 0)

∫ tk
0

dtcHnn̄(tc)|0np〉 ,

(38)

T n̄(t, tc) = T exp

(
− i

∫ t
tc

dt1H(t1)

)
−1

=
∞∑
k=1

(−i)k
∫ t
tc

dt1 · · ·

∫ tk−1
tc

dtkH(t1) . . .H(tk) ,

(39)

where |0np〉 and |0n̄p〉 are the states of the medium con-
taining the neutron and antineutron with the 4-momentum
p= (εn,pn), respectively; T

n̄ is the T -operator of the n̄–
medium interaction (compare with (17)).
We expand the Ψ -operators in the eigenfunctions of

the unperturbed HamiltonianH0 =−∇2/2m+Un. Taking
into account that Hnn̄|0np〉 = ε|0n̄p〉, we change the order
of integration [17] and obtain

Tn̄n(t, 0) =−εt− ε

∫ t
0

dtciT
n̄
ii(t− tc) ,

iT n̄ii(τ) = 〈n̄p0|T
n̄(τ)|0n̄p〉 , (40)

Fig. 7. nn̄ transition in the medium with n̄ in the final state
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where τ = t− tc and T n̄(τ) = T n̄(t, tc). The n̄–medium in-
teraction is separated out in the block T n̄ii(τ). This equa-
tion is important, since the structure of the matrix element
corresponding to the process (2) is similar (see (64)). On
the other hand, (40) can be verified with the use of the ex-
actly solvable potential model.

5.2 Verification of FTA

To verify the FTA we obtain the results (5) and (6) of the
potential model. As in Sect. 2, we takeH = V = const. The
block T n̄ii (τ) is easily evaluated, resulting in

iT n̄ii(τ) = U
n̄
ii(τ)−1 = exp(−iV τ)−1 . (41)

The probability of finding an n̄ is

Wn̄(t, 0) = |Tn̄n(t, 0)|
2 . (42)

By means of (40) and (41) it is easy to verify that
|Tn̄n(t, 0)|2 coincides with (5).
The total nn̄ transition probabilityWt is given by

Wt(t, 0) = 1−|Uii(t, 0)|
2 ≈ 2 ImTii(t, 0) , (43)

where Uii(t, 0) = 〈np0|U(t, 0)|0np〉. In the framework of the
FTA the on-diagonal matrix element Tii has been calcu-
lated in [17]:

Tii(t, 0) = iε
2t2/2− ε2

∫ t
0

dtα

∫ tα
0

dtcT
n̄
ii (tα− tc) . (44)

Using (41) and (44), one obtains that 2 ImTii =W
pot
t .

Consequently, the FTA reproduces all the results of the
potential model. This was to be expected, since one and
the same Hamiltonian was used. The same is also true for
any ab transitions: nn̄, K0K̄0, neutrino oscillations. (The
generalization for the relativistic case is trivial.)

5.3 Cancellation of divergences in the potential model

The consideration given above is infrared-free. Let us re-
turn to the S-matrix problem formulation (∞,−∞). Due
to the zero momentum transfer in the ε-vertex, any ma-
trix element contains a singular propagator (see Figs. 7
and 8a). However, the matrix element of the potential
model Tii obtained by means of the S-matrix approach
is not singular (see (9)). The same is true for the process
shown in Fig. 7. From the standpoint of microscopic theory
the reason is as follows.
In addition to the singular propagator the matrix elem-

ents mentioned above also contain the block T n̄ii , which
is a sum of the zero angle rescattering diagrams of n̄. As
a result, the self-energy part Σ = V appears. The corres-
ponding mechanism of the cancellation of divergences (the
forming of the self-energy part) is illustrated by (19), where
Gm0 ∼ 1/0.
We are interested in the off-diagonal matrix elements

that do not contain the summentioned above (T n̄f �=i instead

Fig. 8. a nn̄ transition in the medium followed by annihilation.
b Same as a but with escaping of particle in the nn̄ transition
vertex

of T n̄ii ), which, hence, diverges because one singular prop-
agator after the ε-vertex appears in any case. (Recall that
the formal sum of the series in ε gives the meaningless self-
energy partΣ ∼ ε2/0.)
The principal result of this section is that the FTA

has been verified by the example of the exactly solv-
able potential model. It is involved in the block iT n̄ii (τ) =
〈n̄p0|T n̄(τ)|0n̄p〉 as a special case.

6 nn̄ transitions followed by annihilation

As shown above, the FTA reproduces all the potential
model results. Besides, for non-singular diagrams it con-
verts to the S-matrix theory (see Sect. 6.1). We now pro-
ceed to the main calculation.
Let us consider the process (2) in nuclear matter (see

Fig. 8a). The Hamiltonians H0 and HI(t) are the same
as in Sect. 4. The 4-momenta of n and n̄ coincide. The
T n̄-operator involves all the n̄–medium interactions. In
consequence of this, Σ = 0. In essence, we deal with two-
step nuclear decay: dynamical nn̄ conversion and anni-
hilation. Its dynamical part lasts only 10−24 s. The sole
distinction with respect to the decay theory is that the
FTA should be used, because the antineutron propagator is
singular.
We give the expressions for the amplitudes from [16].

Next they will be obtained as a special case of a more gen-
eral problem. The matrix element of the process shown in
Fig. 8a is

Tfi(t) =−ε

∫ t
0

dtciT
n̄
fi(t, tc) , (45)

iT n̄fi(t, tc) = iT
n̄
fi(τ) = 〈f |T

n̄(τ)|0n̄p〉. (46)

Here T n̄fi(τ) is the matrix element of the antineutron an-
nihilation in a time τ = t− tc (compare with the matrix
element of the S-matrix in (17)). The T n̄(τ)-operator is
given by (39). Similarly to (40), the n̄–medium annihila-
tion is separated out in the block T n̄fi(τ).
Consider now the more general problem. We calculate

the matrix element Tfi(t) shown in Fig. 8b on the inter-
val (t/2,−t/2). As a result, the following will be shown.
(a) If q 
= 0 (q is the 4-momentum of particle escaped in
the nn̄ transition vertex) and t→∞, we come to the usual
S-matrix amplitude. (b) If q→ 0, (45) is obtained. Such
a scheme allows one to verify and study the FTA. Also
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we will see the point in which the standard calculation
scheme should be changed. (Some preliminary calculations
are sketched in [22].)
Consider the imaginary free-space decay

n→ n̄+Φ , (47)

Φ(x) =NΦ exp(−iqx), where NΦ = (2q0Ω)−1/2. For decay
to be permissible in vacuum put mn̄ =m−2mΦ. As with
Hnn̄, the decay Hamiltonian H′nn̄ is taken in the scalar
formH′nn̄ = ε

′Ψ̄n̄Φ
∗Ψn+H.c.

The corresponding process in nuclear matter is shown
in Fig. 8b. This is the nearest analogy to the process under
study. The neutron wave function is np(x) =Nn exp(−ipx),
where Nn =Ω

−1/2, p= (p0,p) and p0 =m+p
2/2m. The

background nuclear matter field Un is omitted.
Instead of (15) we have

HI =H
′
nn̄+H ,

H ′nn̄(t) = ε
′

∫
d3x
(
Ψ̄n̄Φ

∗Ψn+H.c.
)
; (48)

ε′ is dimensionless. In the lowest order in H ′nn̄, the matrix
element Tfi(t) is

Tfi(t) =−〈Φqf0|
∞∑
k=1

Tk(t)

∫ tk
−t/2

dtcH
′
nn̄(tc)|0np〉 ,

Tk(t) = (−i)
k

∫ t/2
−t/2

dt1 · · ·

∫ tk−1
−t/2

dtkH(t1) . . .H(tk) .

(49)

Here 〈f | represents the annihilation products with (n)
mesons. For the 3-tail H′nn̄, the relation Hnn̄|0np〉 =
ε|0n̄p〉 used in Sect. 5.1 is invalid. A direct calculation is
needed.
Using the standard rules of quantum field theory, we

obtain (see Appendix B)

Tfi(t) =−iε
′NnNΦ〈f0|

∞∑
k=1

(−i)Tk−1(t)

∫ tk−1
−t/2

dtk

×

∫
d3xkH

′(xk)e
i(p−q)xkI(tk)|0〉 , (50)

I(tk) =

∫ ∞
−∞

dk0
2π

∫ tk
−t/2

dtc
1

k0−mn̄− (p−q)2/2mn̄+ i0

× e−ik0tkeitc(q0−p0+k0) . (51)

From this point on the calculations for Fig. 8a and b are es-
sentially different. In (51) we put tk =∞ and −t/2 =−∞.
Then

I(∞) =

∫
dk0
2π

e−ik0tk

k0−mn̄− (p−q)2/2mn̄+ i0

×

∫ ∞
−∞
dtce

itc(q0−p0+k0) (52)

and correspondingly

I(∞) =Ge−i(p0−q0)tk , (53)

G=
1

p0− q0−mn̄− (p−q)2/2mn̄+ i0
, (54)

where G is the non-relativistic antineutron propagator.
Let q = (0, 0) andmn̄ =m (see Fig. 8a). Now

G=
1

p0−m−p2/2m
∼
1

0
(55)

and Tfi ∼ 1/0. This is an irremovable peculiarity. We deal
with an infrared divergence, which is obvious from Fig. 8a.
We thus see the specific point (the limiting transition t→
∞ in (50)) in which the standard S-matrix scheme should
be changed.

6.1 Non-singular diagram

Let us obtain now the amplitudes corresponding to Fig. 8a
and b starting from (50). If q 
= 0, the limit t→∞ can be
considered. In (50) we put t→∞ and substitute (53). Tak-
ing into account that

Nn̄e
−i(p−q)xk |0〉= Ψn̄(xk)|n̄p−q〉 (56)

and using the relation
∫
d3xkH′(xk)Ψn̄(xk) =H(tk) (see

Appendix B), one obtains

Tfi =−iNΦε
′G〈f0|T n̄|0n̄p−q〉 . (57)

Here |0n̄p−q〉 is the state of the medium containing the n̄
with the 4-momentum p− q, and the T n̄-operator is given
by (17). With the help of the relation

iTfi = 〈f |T |i〉=N(2π)
4δ4(pf −pi)Mfi

we rewrite (57) in terms of the amplitudes

M8b = ε
′GMma . (58)

Here M8b is the amplitude of the process shown in
Fig. 8b, Mma is the annihilation amplitude of n̄ with the
4-momentum p− q and G is given by (54). We have ob-
tained the usual S-matrix amplitude, which is the verifi-
cation of (50). As in (16), the antineutron propagator is
bare.
It is easy to estimate the widths corresponding to

Fig. 8b and the free-space decay (47):

Γ8b ≈ ε
′2Γ/(2π2) ,

Γfree ≈ ε
′2mΦ/(2π) , (59)

where we have put mΦ/m� 1. The t-dependence is deter-
mined by the exponential decay law:

W8b,free = 1− e
−Γ8b,freet ∼ Γ8b,freet . (60)

These formulas will be needed below.
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6.2 Singular diagram

Let q = 0 andmn̄ =m (see Fig. 8a). In (50) one should put
ε′ = ε and NΦ = 1. Upon integration with respect to k0,
(51) becomes

I(tk) =−ie
−itkp0

∫ tk
−t/2

dtc . (61)

As in (56), Nn̄ exp(−ipxk)|0〉 = Ψn̄(xk)|n̄p〉. Turning back
to the HamiltonianH(tk), one obtains

Tfi(t) =−iε〈f0|
∞∑
k=1

Tk(t)

∫ tk
−t/2

dtc|0n̄p〉 . (62)

Using the formula

∫ t/2
−t/2

dt1 · · ·

∫ tk−1
−t/2

dtk

∫ tk
−t/2

dtcf(t1, . . . , tc)

=

∫ t/2
−t/2

dtc

∫ t/2
tc

dt1 · · ·

∫ tk−1
tc

dtkf(t1, . . . , tc) ,

(63)

we change the integration order and pass on to the interval
(t, 0). Finally

Tfi(t) =−ε

∫ t
0

dtc〈f0|T
n̄(t− tc)|0n̄p〉 ,

〈f0|T n̄(τ)|0n̄p〉= iT
n̄
fi(τ) , (64)

which coincides with (45). The result is expressed through
the submatrix T n̄fi(τ). (Compare with (40).) Note that
Tfi(t) coincides with the second term of (40) with the
replacement 〈i| = 〈n̄p0| → 〈f |. This can be considered as
a test for the Tfi(t).
Comparing (64) and (57), one can see the formal corres-

pondence: if q→ 0, GT n̄fi→ i
∫ t
0 dτT

n̄
fi(τ).

7 Infrared singularities and the formulation
of the S-matrix problem

In this section we consider the time-dependence of the ma-
trix elements and the other characteristic features of the
FTA and complete the calculation of process (2).
The FTA is infrared-free. This approach is naturally

connected with the experimental conditions. Indeed, meas-
urement of any process corresponds to some interval τ .
So it is necessary to calculate Ufi(τ). The replacement
U(τ)→ S(∞) is justified if the main contribution gives
some region ∆< τ , so that Ufi(τ > ∆) = Ufi(∞) = Sfi =
const. The expressions of this type are the basis for all S-
matrix calculations. The following cases are possible.
1. There is bound to be an asymptotic regime. Then the

usual scheme realized in field theory or non-stationary the-
ory of scattering is relevant. Figure 8b corresponds to this
case.

2. There is no asymptotic regime. An example is pro-
vided by the oscillation Hamiltonian Hnn̄. We have the
usual non-stationary problem. The S-matrix approach is
inapplicable. Because of this, for Fig. 8a the calculation has
been done in the framework of FTA.
A somewhat different explanation of the application of

the FTA is as follows. If HI =Hnn̄, the solution is peri-
odic. It is obtained by means of non-stationary equations
of motion and not S-matrix theory. This is clear from the
definition of the S-matrix. To reproduce the limiting case
H→ 0, i.e. the periodic solution, we have to use the FTA.
Let us return to (64). The annihilation of n̄ in nuclear

matter can be considered as the decay of a one-particle
state with the characteristic time τa. Correspondingly, T

n̄
fi

can be interpreted as the decay matrix of the n̄–medium
state. Obviously

T n̄fi(τ > τa)≈ T
n̄
fi = const. (65)

and

W n̄ =
∑
f �=i

∣∣T n̄fi
∣∣2 = 1 , (66)

where W n̄ is the total decay probability of the n̄–nucleus.
Let

t�∆≈ τa . (67)

In view of this condition the submatrix T n̄fi can be calcu-
lated bymeans of S-matrix theory. The FTA is needed only
for the description of the subprocess of the nn̄ conversion.
However, the condition (66) greatly simplifies the calcula-
tion. One can write immediately [16]

Wa(t)≈
∑
f �=i

∣∣− iεtT n̄fi
∣∣2 = ε2t2W n̄ = ε2t2 =Wf (t) , (68)

whereWa(t) is the probability of the process (2).
For nn̄ transitions in nuclear Wt, Wt(t) =Wa(t), since

all the n̄ annihilate. The interpretation of Wa(t) has
been given above: momentary nn̄ conversion at some
point in time between 0 and t; annihilation in a time
τa ∼ 6×10−24 s. The explanation of the t2-dependence
is simple. The process shown in Fig. 8a represents two
consecutive subprocesses. The speed and probability of
the whole process are defined by those of the slower sub-
process. Since τa� t, the annihilation can be considered
instantaneous: for any t1 < t the annihilation probability is
W n̄(t− t1)≈ 1. So, the probability of process (2) is defined
by the speed of the nn̄ transition: Wa ≈Wf ∼ t2, but not
∼ t/Γ (see (6)). In essence, we deal with the limiting case
τ/t→ 0, or, similarly, T n̄fi(τ) = T

n̄
fi at any τ . Formally, the

quadratic time-dependence follows from (64).
Owing to the annihilation channel, Wa is practically

equal to the free-space nn̄ transition probability. The fact
that Σ = 0 tends to increaseWa. So, τnn̄ ∼ Tnn̄, where Tnn̄
is the oscillation time of the neutron bound in a nucleus.
All the results have been obtained by means of formal

expansions. They are valid at any finite t. Consequently,
the singularities of the S-matrix amplitudes M1b and M2
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result from the erroneous formulation of the problem. The
problem should be formulated on the finite interval (t, 0).
If t→∞, (68) diverges just as the modulus (16) squared
does. The infrared singularities point to the fact that there
is no asymptotic regime.

8 Summary and discussion

The importance of the unitarity condition is well
known [23–25]. Nevertheless, non-Hermitian models are
frequently used, because on the one hand, they greatly sim-
plify the calculation and on the other hand, it is hoped that
an error may be inessential. This paper demonstrates that
the non-unitarity of the S-matrix can produce a qualitative
error in the results. Certainly, unitarity is a necessary and
not a sufficient condition. We compare our results and the
one of the potential model.
The time-dependence is a more important character-

istic of any process. It is common knowledge that the t-
dependence of the decay probability in the vacuum and
medium is identical. Equation (60) illustrates this fact. In
our calculation the t-dependencies coincide as well: Wa ∼
Wt ∼ t2 andWf ∼ t2. The potential model givesW

pot
t ∼ t,

whereas Wf ∼ t2. There is no reason known why we have
such a fundamental change.
The Γ -dependence of the results differs fundamentally

as well. The probability of the decay shown in Fig. 8b is
linear in Γ :

W8b = Γ8bt∼ Γt (69)

(see (59) and (60)). For Fig. 8a the annihilation effect acts
in the same direction

Wa ∼W
n̄ ∼ Γ . (70)

In the potential model the effect of absorption acts in the
opposite direction, W pott ∼ 1/Γ . Recall that the annihila-
tion is the basic effect determining the speed of the process
(see (6) and (68)).
Let us consider the suppression factor R. From (68) we

have

R =
Wa

Wf
∼ 1 . (71)

For similar processes the value R∼ 1 is typical. Indeed, in
the medium the free-space decay (47) is suppressed by the
factor

Γ8b

Γfree
=
Γ

πmΦ
≈
1

π
, (72)

where we have putmΦ ≈ Γ .
A realistic example is the pion production pn→ ppπ−

in vacuum and on a neutron bound in a nucleus. If the
pion energy is in the region of resonance, the pion ab-
sorption is very strong. This has effects on the number
of pions emitted from the nucleus, but not on the fact
of pion formation inside the nucleus. (In the latter case

the pion and the products of pion absorption should be
detected).
In the processes cited above R ∼ 1. The potential

model gives Rpot → 0: if Γ ∼ 100MeV and t ∼ 1 yr [26],
Rpot ∼ 10−30.
Consequently, in the potential model the t- and Γ -

dependencies are principally incorrect. As a result, the
suppression is enormous: Rpot→ 0. This is not surprising,
since the potential model describes onlyWn̄. Recall that in
the strong absorption regionWn̄�Wa.
The next important point is the competition between

scattering and annihilation in the intermediate state. The
models (13) and (15) reproduce the values of r and r1 (see
Sect. 4.3). Since the potential model does not describe the
processes (2) and (11), it makes no sense to speak of a com-
petition effect in this model. The greater the | ImV |, the
greater the error in theW pott andWa calculated by means
of the potential model.
Consider now the effects of coherent forward scattering

and absorption. Let there be forward scattering alone:H =
ReV . Since the FTA reproduces all the potential model
results (see Sect. 5.2), it describes the above-mentioned
special case as well, and in particular the suppression of
oscillations by ReV .
Let there be an annihilation vertex only: V = 0 and

H=Ha . (73)

The annihilation Hamiltonian Ha is given by (27). In this
case we inevitably arrive at the amplitude with singular
propagator. The dressed propagator cannot arise in prin-
cipal (see Sect. 4.2). In view of (22) the model (73) is rea-
sonable and so the resultWa ≈Wf seems quite natural for
us. In our calculation the approximation (73) has not been
used. Nevertheless, the result is the same as in model (73).
In this connection we briefly outline the principal points of
our calculation.
The process shown in Fig. 8b is described by the Hamil-

tonian HI =H
′
nn̄+H. Since H appears in the block T

n̄
fi

only, the antineutron propagator is bare. For Fig. 8a the
picture is the same; however, Tfi ∼ 1/0 (here we keep in
mind the S-matrix problem formulation). Due to this we
had to use the FTA. It must be emphasized that in the po-
tential model the antineutron propagator between ε-vertex
and block T n̄ii is also bare (see Fig. 7 and Sect. 5.3), since
the interaction Hamiltonian has the same structure (15).
The fact that antineutron propagator is bare is princi-

pal. It entails the divergence of the S-matrix amplitude;
the application of FTA; the linear time-dependence of the
matrix element Tfi(t) and the t

2-dependence of the result.
As a result Wa increases. In our opinion the models with
a dressed (and consequently non-singular) propagator are
non-realistic (see Sect. 4).
(Recall that in the potential model Σ = V by the con-

struction of the model. Since this model is inapplicable, the
field-theoretical approach is used. The self-energy should
be considered in the context of the concrete problem. Ob-
viously, for Fig. 8b the propagator is bare. For Fig. 8a it
is bare as well, because the n̄–medium interaction is the
same.)
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All the formulas up to (64) are true for any ab tran-
sitions in which ma =mb. (Generalizations for the rela-
tivistic case and the case when ma 
=mb are simple.) The
next important point is the condition (67). For nn̄ transi-
tions in nuclei it is obvious, because in this case the value
t = T0 = 1.3 yr [26] is used (T0 is the observation time in
a proton decay-type experiment). The condition t� τa
leads to (65) and (66). Due to these, the result does not de-
pend on the specific form ofH and coincides with the result
given by the model (73).
Once the antineutron annihilation amplitude is defined

by (46), the rest of the calculation is rather formal. The dis-
tinguishing feature of the model is that the amplitude of
the process is “proportional” to the annihilation amplitude
Tfi ∼ T n̄fi. This structure is typical for the direct processes.
If the condition t�∆ is not fulfilled, a direct calcu-

lation of (64) is needed. However, the qualitative picture
remains the same: the process amplitude is proportional to
the absorption amplitude.
It is interesting to study the behavior of Wt in the in-

termediate range, t ∼ ∆. It seems plausible that Wt de-
pends slightly on the value of ∆/t (in comparison with
the potential model results). We also note that there is
no asymptotic regime for free-space K0K̄0 oscillations. In
our opinion, it makes sense to look at the calculation of
∆m=mL−mS (GIM mechanism) from the standpoint of
the applicability of the S-matrix approach in this case (see
Sect. 7).

9 Conclusion

The approach considered above reproduces all the results
on the particle oscillations (Sect. 5.2). Certainly, for prob-
lems where the absorption is inessential, the standard
model of oscillations is more handy, since it is more simple.
Our approach is oriented to the processes like (1), which
are not described by the potential model.
A direct calculation of nn̄ transitions in nuclear matter

followed by annihilation has been done. The results have
been discussed in Sect. 8.We confirm our restriction [16] on
the free-space nn̄ oscillation time τnn̄ > 10

16 yr. Compared
to [16], the result (68) was obtained as a special case of
a more general problem. Besides, the medium corrections,
the uncertainties related to the amplitudes, the limiting
cases and competition between scattering and annihilation
in the intermediate state have been studied. Model (73)
and the analysis made in Sects. 4 and 5.3 show that Σ = 0.
Nevertheless, this is a point of great nicety. Further inves-
tigations are desirable. The region t <∆ and oscillations of
other particles can be considered as well.
The calculation up to (64) is formal. With the re-

placement T n̄fi(τ)→ T
b
fi(τ), where T

b
fi is the b-particle

absorption amplitude, the matrix element (64) describes
the process (1) in which ma =mb. In this connection we
point out some features of (64). a) The amplitude Tfi(t)
is “proportional” to the amplitude T bfi(τ). In the poten-
tial model the effect of b-particle absorption acts in the
opposite direction, which tends to suppress the process.

b) In the lowest order in ε the potential model gives the
linear t-dependence W pott ∼ t/Γ . For any block T bfi(τ)
model the time-dependence of the value |Tfi(t)|2 cannot be
linear.
Certain of the above-given results have a general na-

ture. They are valid for any reaction or decay in the
medium. The main ones of them are as follows. 1) For
processes with zero momentum transfer the problem
should be formulated on a finite time interval. 2) The
final-state absorption (decay) does not tend to suppress
the total process probability as well as the probabil-
ity of the channel corresponding to absorption. This is
true for the reactions, decays and ab transitions in the
medium. 3) For an intermediate-state particle the low-
density limit can be used. This enables one to verify
the model. In particular, the particle self-energy and
amplitudes of subprocesses should be self-consistent. In
the lower-density approximation this problem becomes
transparent.

Appendix A

In this appendix the relative annihilation probability of the
intermediate n̄ for nn̄ transition in the medium is calcu-
lated. Similarly to (31), we obtain the probability of pro-
cess (2) in a unit of time:

Γ2 =N1

∫
dΦ|M2|

2 = a2mN1

∫
dΦ|Mma |

2 = a2mΓ ,

(A.1)

am = εG
m
0 . The normalizationmultiplierN1 is the same for

Γ2 and Γ . The term “width” is not used, because the t-
dependence of process (2) does not need to be exp(−Γ2t)
(see Sect. 7).
In the low-density approximation [27, 28] Γ = vρσa and

Γ2 = a
2
mvρσa . (A.2)

The on-diagonal matrix element Mm(0) corresponding to
the process (n–medium)→ (n̄–medium)→ (n–medium) is

Mm(0) = εGm0 M
m
s (0)G

m
0 ε= a

2
mM

m
s (0) (A.3)

(compare with (34)). HereMms (0) is the amplitude of zero
angle scattering of n̄ in the medium.
Taking into account that

1

T0
2 ImMm(0) = Γt ,

1

T0
2 ImMms (0) = vρσt (A.4)

(T0 is the normalization time and Γt is the probability of
the process (37) in a unit of time), one obtains

Γt = a
2
mvρσt (A.5)
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and correspondingly

Γ2

Γt
= r1 . (A.6)

Equations (A.2) and (A.5) are interpreted in line with the
low-density approximation physics.

Appendix B

The calculation is standard [29, 30] up to the integration
over t. The neutron and antineutron are assumed to be
spinless. We have

Ψn(x)|np〉= Ψn(x)b
+(p)|0〉=Nne

−ipx|0〉 , (B.1)

〈Φq |Φ
∗(x) = 〈0|NΦe

iqx . (B.2)

Then

〈Φq|Φ
∗(xc)Ψn̄(xc)|np〉=NnNΦe

i(q−p)xc . (B.3)

In the last multiplier of (49) we separate out the antineu-
tron field operator Ψn̄(xk):

H(tk) =

∫
d3xkH(xk) =

∫
d3xkH

′(xk)Ψn̄(xk) . (B.4)

Equation (49) becomes

Tfi(t) =−iε
′NnNΦ〈f0|

∞∑
k=1

(−i)Tk−1(t)

∫ tk−1
−t/2

dtk

×

∫
d3xkH

′(xk)J(tk)|0〉 , (B.5)

J(tk) =

∫ tk
−t/2

dtc

∫
d3xc〈T (Ψn̄(xk)Ψ̄n̄(xc))〉e

i(q−p)xc .

(B.6)

For Fig. 8a the problem is non-relativistic and so for Fig. 8b
we also take the non-relativistic antineutron propagator

〈T (Ψn̄(xk)Ψ̄n̄(xc))〉 = iG(xk−xc)

= i

∫
dk0
2π
e−ik0(tk−tc)

∫
d3k

(2π)3
eik(xk−xc)

k0−mn̄−k2/2mn̄+ i0
.

(B.7)

Upon integrating over xc and k we obtain (50) and (51).
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